Conduct a detailed study to discuss the application of the logarithm in mathematical domain and to recognize the history of development of logarithmic function.
LOGARITHMS
Introduction
Application of the logarithm in mathematical domain is used for realizing the nature of power factors associated with a function with the help of graphical representation. This study can help to determine different aspects related to this function and it application in different fields along with the history associated with the invention of this factor. Moreover, this study illustrates different formulas related to the logarithms.
Since logarithm of a function behaves opposite to the exponentiation function hence this function are called opposite exponentiation. Logarithm with irrational number ‘e’ in the base called natural logarithm and sometime these functions are represented without any base such as- logx. On the other hand, logarithm with 10 in the base can be considered as common type logarithm.
Application of logarithm can be seen in different fields such as in business planning and in economics. In business planning logarithm are used to determine the return on investment by which the potential risk of business can be determined. On the other hand, in economics logarithms can be for determining the growth rate of inflation. Differences in the value can be seen in common and natural logarithm hence the application of these two operators is different.
This study can help to realize different advantages and disadvantages of logarithmic function and application of this function in different fields. One of the main properties of logarithmic function is whenever one tries to add two logarithmic functions the exponents of these products are multiplied.
Logarithmic function can be applied for realizing the elastic nature of a substance. One of the major drawback of logarithmic function is the process of analysis with the help of logarithmic function is difficult.
History
John Napier can be considered, as the father of logarithm and behind the discovery of this function was to mitigate the issues related to application of trigonometric identity function in astronomy. Application of logarithmic function has solved issues related to the complexity of trigonometric identity function such as 2 cos (P) cos(Q)= cos (P+Q) + cos (P-Q). In the trigonometric identity function, three steps were required for solving the equation and find out the value of the function. With the help of logarithmic function, this problem can be solved more reliably.
John Napier discovery of logarithm has helped to mitigate the problems of complexity associated with the logarithm. Long after John Napier, invention of logarithm Bernoulii a renoowned physicist found out that logarithmic function of a negative integer provides positive value. From this point of view, it can be stated that logarithm provides the real value of a function.
Napier has discovered that if one considered two lines having collinear points on them and the distance among these points are equal then second line can be assumed as sine with reference to this first line can be described as the logarithm of this sine function. Hence, from this perspective it can be stated that with the help of a finite line segments an infinite line segment can be described.
John Naprier develops the table of logarithm by increasing the arc values and taking values for each angle. Napier’s table provides logarithmic values of all natural numbers by which large exponential functions can be solved. Values of these exponential factors can help to solve different problems associated with geometric means. From this point of view, it can be stated that Napier’s invention has helped to increase the effectiveness of statistical operations. Napier in the logarithmic table considered the value of the angles of Arc angle 0° to 45° and found out the values of the logarithmic function for these angles.
Application of logarithms
The key purpose of logarithm application is providing problem-solving approaches using the critical intervention of mathematics and statistics. Nonetheless, functional limits are also determined through the effective application of logarithms. Understanding the limit of a function is necessary for the proper orientation of function. Hence, using the limiting values, after observing from logarithms application, certain functions can be operated within the range of its orientation.
Measuring the intensity of an earthquake is hectic in nature, which can be evaluated with the appropriate application of logarithms. Likewise, larger values can be managed and expressed with the suitable approaches of logarithms. However, in the field of chemistry, using logarithmic functions, acidity (pH-value) can be measured by the chemists. Similarly, the sound intensity of daily life can be measured by the application of logarithmic functions. Therefore, using this function large field of academics and real world can be served.
Pros and cons of logarithm applications
Advantages
The key advantage of the application of logarithm can be considered as transformation of exponential function into the linear function. Since exponential functions are hard to understand, for the general people, thus, using the logarithmic application, simplification can be conducted. In a similar vein, plotting large value in graph paper is not possible using ordinary mathematical approaches. In this context, logarithm considers 10 as base value of the function and thereby large values can be plotted in the graph papers quite easily.
Disadvantages
In spite of vast field of application, logarithm applications are solely dependent on the base value of the function. Hence, according to the change of base value, output of the logarithm differs. Likewise, using the logarithm function, zero cannot be represented. Hence, null value is denied by the function and viability of information reduces thereby. Moreover, reciprocal nature of logarithm, in context to an exponential function, deprives the nature of calculation. Thus, exponential graphs cannot be prepared using logarithm graph papers.
Conclusion
From the above study, it can be seen that logarithm is considered for simplification of the exponential function. Apart from this, representation of power can be conducted using the logarithmic values. It has been observed that the nature of power varies with changing variables of a function. Hence, change in the power can be demonstrated using the logarithm function. On the other hand, ln is used for the logarithms when ‘e’ is considered as the base value of the function.
Apart from academic studies, logarithm has vast application in real life operations. As for an example, using the discrete logarithm, various portion of business study can be conducted. Likewise, using the logarithm function, small values can be intensified and thereby it can be represented for proper evaluation. Meanwhile, huge values representation can be considered as an advantage of logarithmic application, whereby changes in the variables can be identified in a critical manner.
Calculation of astronomy is a critical matter and requires proper attention. Therefore, John Napier has developed the concept of the logarithm, whereby complexity of such calculations is dwindled down significantly. Besides this, trigonometric identity is replaced after the effective application of logarithm. Nonetheless, in the field of chemistry, calculation of pH-value is hectic process and effective application of logarithm offers an opportunity for the chemists to evaluate the acidity in a simple manner.
It has been observed from the study that apart from advantages, several drawbacks are impacting the vast application of logarithm. As for an example, logarithm scale is unable to plot null value. Therefore, the reliability of value is deprived to some extent during the evaluation of the function through logarithmic operator. Additionally, as per the change, in base value of logarithm, output differs from its previous value. Moreover, one cannot represent both positive and negative value of logarithm inside the same graph. Despite these drawbacks, effectiveness of logarithm has enhanced its utilization and it is considered as a statistical auxiliary.