
Brief Description

Ginger Bread (company name) working throughout the UK who provides baking equipment to large bakeries. Ginger Bread comprises of several traditional departments including, Research and development, Production, Finance, HR, Sales and Marketing and IT. Each department has roughly 85 members of staff. Each department implements a standard hierarchical management structure.

Objective

To set up the project team and finalize the large company and social implementation plans.

Purpose of Plan

Project Plan will provide a definition of the project, including the project’s goals and objectives. It is just as important for an established business, irrespective of its size, as it is for a start up.

The Project Plan defines the following:
· PROJECT PURPOSE
· BUSINESS AND PROJECT GOALS AND OBJECTIVES
· INTERFACES
· CONSTRAINTS
· RISKS
· PROJECT MANAGEMEN APPROACH
· SCOPE ROLE AND RESPONSIBILITIES

The following are Entity Set and their corresponding attributes

CLIENTS
Attributes: CID, CompanyName, Address1, Address2, City, County, Postcode, Region, Phone, Fax, Email, WebSite, Notes
 It’s Primary Key: CID
 CID can be only unique attribute for entity CLIENTS. So it should be primary key here.

create table CLIENTS(CID int primary key,
CompanyName varchar(50) ,
Address1 varchar(50),
Address2 varchar(50) ,
City varchar(50),
County varchar(50) ,
Postcode varchar(50),
Region varchar(50) ,
Phone int,
Fax int,
Email varchar(50) ,
WebSite varchar(50),
Notes varchar(50)
);
[image:]

STAFF
Attributes: ID, CID, Firstname, Surname, Department, Gender, Grade, Trade, ContactNumber, LastPDR, Salary, Notes, Recommendations
 It’s Primary Key: LoneId
 CID are Foreign Key for entity STAFF reference by entity Student and ID can be only unique attribute for entity STAFF . So it should be primary key here.

create table STAFF(ID int primary key,
Firstname varchar(50),
Surname varchar(50),
Department varchar(50),
Gender varchar(50),
Grade varchar(50),
Trade varchar(50),
ContactNumber int,
LastPDR varchar(50),
Salary varchar(50),
Notes varchar(50),
Recommendations varchar(50),
CID int,
CONSTRAINT fk_CLIENTS
FOREIGN KEY (CID)
REFERENCES CLIENTS(CID)
);

[image:]

View

[image:]A view is a window through which you access a portion of one or more tables. View itself doesn't contain any data but it refers to the data of a table on which it is based.

The table on which the view is based is called as base table.
A view is also called as “virtual table” as it can be used when a table can be used. View retrieves the data by executing the query and presents the data in the form of a table.

Views are used to let users access only the portion of the data that they are supposed to access. Views are very commonly used objects in Oracle. In fact objects such as USER_TABLES, USER_CONSTRAINTS etc., are not actually tables and instead they are views.

Why We Need A View?
A view is required in several cases. Let us start with a simple requirement. Assume the table CLIENTS is owned by user “FIGO”. As the owner of the table Figo will have all the privileges on that table. User Figo now wants another user – Raul to access CLIENTS table. To this effect Figo can grant permission to Raul. But Figo doesn’t want Raul to access column FEE.

If Figo grants permission to Raul then Raul will have complete access to table and Figo cannot stop Raul from accessing FEE column. So Figo creates a view on CLIENTS table that includes everything from CLIENTS table except FEE. Then Figo grants permission on the view to Raul and not on the base table. Since Raul has access only to the view, he can access whatever data is presented by the view.

A view in the above requirement is quite ideal for two reasons.

1. It fulfills the requirement without storing a separate copy of the data. A view doesn’t store any data of its own and takes the data from base table.
2. As the data is taken from base table, accurate and up-to-date information is provided to Raul. Yet the column to be hidden from Raul is hidden as it is not part of the view.

The following are the other important applications of views:

Provides an extra layer on the top of table allowing only a predetermined rows or columns to be accessed.
Allows complex queries to be stored in the database. A view stores the query that is used to create it in the database. It uses the query to retrieve the data from the base table(s). If a complex query is to be referred again and again then it can be stored in the form of a view.
Can present the data of the table in different forms. For instance, the name of the columns can be changed and two or more columns can be presented as one column or split one column as two or more columns.
Can isolate application from the changes in the definition of the table.

Creating and using views
A view is created using CREATE VIEW command. At the time of creating the view, we have to give the name of the view and the query on which the view is based.
For example, to create a view that takes everything from CLIENTS table except FEE column, given the following CREATE TABLE command.

Here is the syntax of CREATE VIEW command.
CREATE [OR REPLACE] VIEW viewname
 [(column-name, column-name)]
	 AS Query
 	 [with check option];

Drop Statement

Indexes, tables, and databases can easily be deleted / removed with the DROP statement.

The DROP INDEX Statement
The DROP INDEX statement is used to delete an index in a table.
DROP INDEX index_name;

The DROP TABLE Statement
The DROP TABLE statement is used to delete a table.
DROP TABLE table_name;

The TRUNCATE TABLE Statement
Delete the data inside the table, then use the TRUNCATE TABLE statement:
TRUNCATE TABLE table_name;

Security And Access Control
All employees in the organization, as well as business partners, must be trained on the classification schema and understand the required security controls and handling procedures for each classification. The classification a particular information asset has been assigned should be reviewed periodically to ensure the classification is still appropriate for the information and to ensure the security controls required by the classification are in place.
Access to protected information must be restricted to people who are authorized to access the information. Authentication is the act of verifying a claim of identity. The Username is the most common form of identification and the Password is the most common form of authentication.

Stored procedure
There are two types of PL/SQL blocks – anonymous and stored procedures.

A stored procedure is a PL/SQL block that is stored in the database with a name. It is invoked using the name. Each procedure is meant for a specific purpose.

A stored procedure is stored in the database as an object. It is also called as database procedure as it is stored in the database. A procedure may take one or more parameters. If a procedure takes 0parameters then these parameters are to be supplied at the time of calling the procedure.

Test schedule to test the access levels
ODBC (Open Database Connectivity) provides 4 conformance levels depending upon how much of the ODBC specification is implemented in the driver. The levels are:
· CORE API
· LEVEL 1
· LEVEL 2
· LEVEL 3 - latest spec.
The Oracle7 ODBC driver supports ODBC Version 2.5 and 3.0 Level 2 only. Oracle does not support Level 3 ODBC, but Level 1 is all that is necessary to do standard operations.

Automating Privileges

When we set u the database then it force to executes a tedious number of GRANT. Furthermore, privileges require constant maintenance, as people change jobs. For example, if a clerk in Human Resources is terminated, you want to revoke the Update privilege as soon as possible, otherwise the unhappy employee might execute a statement such as the following one:	
UPDATE hr_data
SET (emp_name, hire_date, dept_num) = (NULL, NULL, 0)

Less dramatic, but equally necessary, privilege changes are required daily, or even hourly, in any model that contains sensitive data. If you anticipate this need, you can prepare some automated tools to help maintain privileges.
Your first step should be to specify privilege classes that are based on the jobs of the users, not on the structure of the tables.

Automating with a Command Script
Operating system probably supports automatic execution of command scripts. In most operating environments, interactive SQL tools such as DB–Access accept commands and SQL statements to execute from the command line. These two features to automate privilege maintenance.
The details depend on your operating system and the version of the interactive SQL tool that you are using. You must create a command script that performs the following functions:
· Takes a user ID whose privileges are to be changed as its parameter
· Prepares a file of GRANT or REVOKE statements customized to contain that user ID
· Invokes the interactive SQL tool (such as DB–Access) with parameters that tell it to select the database and execute the prepared file of GRANT or REVOKE statements

Using Roles
[bookmark: idx490]Another way to avoid the difficulty of changing user privileges on a case-by-case basis is to use roles. The concept of a role in the database environment is similar to the group concept in an operating system. A role is a database feature that lets the DBA standardize and change the privileges of many users by treating them as members of a class.
[bookmark: ddi061008222]

Creating a Role
[bookmark: idx491]To start the role creation process, determine the name of the role and the connections and privileges that you want to grant to users who hold that role. Although the connections and privileges are strictly in your domain, you need to consider some factors when you declare the name of a new role. Do not use any of the following SQL keywords as role names:
[image:]
A role name must be different from existing role names in the database. A role name must also be different from user names that are known to the operating system, including network users known to the server computer. To make sure your role name is unique, check the names of the users in the shared memory structure who are currently using the database as well as the following system catalog tables:
· sysusers
· systabauth
· syscolauth
· sysfragauth
· sysprocauth
· sysfragauth
· sysroleauth
· sysxtdtypeauth
When the situation is reversed and you are adding a user to the database, check that the user name is not the same as any of the existing role names.
[bookmark: idx492]After you approve the role name, use the CREATE ROLE statement to create a new role. After the role is created, all privileges for role administration are, by default, given to the DBA.
[bookmark: ddi061008769]
Manipulating User Privileges and Granting Roles to Other Roles
[bookmark: idx493]As DBA, you can use the GRANT statement to grant role privileges to users. You can also give a user the option to grant privileges to other users. Use the WITH GRANT OPTION clause of the GRANT statement to do this. You can also use the WITH GRANT OPTION clause when granting privileges to roles as in this example:
GRANT rol1 TO usr1 WITH GRANT OPTION;

When you grant role privileges, you can substitute a role name for the user name in the GRANT statement. You can grant a role to another role.

[bookmark: ddi061009007]Enabling Default Roles and Non-default Roles
[bookmark: idx494]After the DBA grants privileges and adds users to a role, there are two possible ways to enable roles.
· [bookmark: idx495]The DBSA can specify a default role for PUBLIC or for individual users by using the GRANT DEFAULT ROLE statement. This role is automatically activated as the initial role setting when the user connects to the database.
· Any role that a user holds can also be activated when the user specifies that role in the SET ROLE statement.
[bookmark: ddi061009100]
Confirming Membership In Roles and Dropping Roles
[bookmark: idx496][bookmark: idx497]Where you are uncertain which user is included in a role. Perhaps you did not create the role, or the person who created the role is not available. Issue queries against the sysroleauth and sysusers system catalog tables to find who is authorized for which table and how many roles exist.
After determine which users hold which roles, you might discover that some roles are no longer useful. To remove a role, use the DROP ROLE statement. Before you remove a role, the following conditions must be met:
· Only roles that are listed in the sysusers system catalog table as a role can be destroyed, but you cannot drop a built-in role.
· You must have DBA privileges, or you must be given the grantable option in the role to drop a role.

image3.png
Workspace
e So, PUSOL ang SoLPlus statemerts
(et Table CUENTSE i o, 3

Table created

image4.png
Workspace
Entar SoL. PUSGL ang S0L-PIus statements.
ereate abie STAFFID Tt primary e, =
[Ficstnama varcharcs0s,
imame varcnar(so)
Deparimentvarchar(so,
[Qenaervarcharist.
(Grace varchar(s0.
[Frac varchar(sty

i
[LasIEOR varcnar(so)
S ianvarchar(a0s,
[Notes varchar(soy:

Table created.

image5.wmf
CCODE

NAME

DURATION

FEE

PREREQUSITE

CCODE

NAME

DURATION PREREQUSITE

Table

View

image6.png
aer delte. insan refarances.
o8 eend t selat
et index publc e

