

Australian institute
of
music

 				

[bookmark: _GoBack]
Part-1: Entity-relationship data model

ER model is a graphical representation of entities and their relationship to each other, typically used in computing in regard to the organization of data within database. The meaning is described in terms of a conceptual or ER schema. ER schemas are comparable class diagrams in UML

List of entities

Entity: An object in the world that can be distinguished from other objects
Entity set: A set of similar entities
Here the following entities are:
· staff
· staff_course
· course
· instrument
· student
· student_course
· invoice

List of attributes
The basic unit of information about any entity occurrence. Here describe the list of attributes i.e;
· staff: staff_id, staff_name, staff_family_name, staff_dob, staff_phone, staff_add, staff_degree
· staff_course: staff_id, course_id
· course: course_id, course_name, cost, time
· instrument: instrument_id, instrument_name, course_id, stock_qty, manufature_name
· student: s_id, s_name, s_add, s_dob, s_phone, s_family_name, s_email
· student_course: s_id, course_id, datetime, course_duration, staff_id, payment, date_paid
· invoice: invoice_no, s_id, amount, date

Business Rules:
Business rules are the constraints that you wish to impose protect the database from becoming incomplete, inaccurate, or inconsistent. Although you may not be able to implement some business rules within the DBMS. It is concerned only with high-level design that is, specifying what business rules are required irrespective of how this might be achieved. Having identified the business rules, you will have a logical data model that is a complete and accurate representation of the organization to be supported by the database.
We consider the following types of business rules i.e, required data, column domain constraints, entity integrity, multiplicity, referential integrity, other business rules.
Here the business rule defined by the database i.e
1. The minimum course time to teach is 30 minutes.
2. The Maximum Course time to teach is 1 hr.
3. Invoice will generate only after course is finished for the student.
4. Invoice will be generated only for previous month completed course.

Assumptions:
1. Student(s) cannot enrol is same course again if the last payment is due.
Part-II Relational database implementation

Normalization: Normalization is a formal process for design which attributes should be grouped together in a relation. Normalization can be a conventional method regarding design which attributes needs to be grouped together in a relation. Just before proceeding with all the physical design we'd like a strategy to confirm the particular logical design to this point. Normalization is a tool to be able to confirm & enhance the logical design. It requires to fulfil a few constrain.
There are several normal forms defined,
First Normal Form (1NF)
Second Normal Form (2NF)
Third Normal Form (3NF)
Boyce codd normal form (BCNF)
Fourth Normal Form (4NF)
Fifth Normal Form (5NF)

First Normal Form:
 First Normal Form eliminates repeating groups by putting each into a separate table and connecting them with a one-to-many relationship.
Two rules follow this definition:
· Each table has a primary Key made of one or several fields and uniquely identifying each record
· Each field is atomic, it does not contain more than one value.

Second Normal Form:
Second Normal Form eliminates functional dependencies on a partial key by putting the fields in a separate table from those that are dependent on the whole key.

Third Normal Form:
Third Normal Form eliminates functional dependencies on non-key fields by putting them in a separate table. At this stage, all non-key fields are dependent on the key, the whole key and nothing but the key.

Here the table are fully normalised i.e,
1) staff (staff_id, staff_name, staff_family_name, staff_dob, staff_phone, staff_add, staff_degree)
It’s Primary Key: staff_id
2) staff_course (staff_id, course_id)
Foreign Key (staff_id) References staff(staff_id), Foreign Key (course_id) References course(course_id)
3) course(course_id, course_name, cost, time)
It’s Primary Key: course_id
4) Instrument (instrument_id, instrument_name, course_id, stock_qty, manufature_name It’s Primary Key: instrument_id)
Foreign Key (course_id) References course(course_id)
5) Student (s_id, s_name, s_add, s_dob, s_phone, s_family_name, s_email)
It’s Primary Key: s_id
6) student_course: s_id, course_id, datetime, course_duration, staff_id, payment, date_paid
Foreign Key (course_id) References course(course_id), Foreign Key (s_id) References student(s_id)
7) invoice (invoice_no, s_id, amount, date)
It’s Primary Key: invoice_no, Foreign Key (s_id) References student(s_id)

Functional Dependencies
A functional dependency (FD) is a constraint between two sets of attributes in a relation from a database.
 FD: X → Y is called trivial if Y is a subset of X.
zip city, state

1) Multi-valued Dependencies
Multivalued dependency is a full constraint between two sets of attributes in a relation.
x y
s_name s_phone
s_name s_id
2) Candidate Keys
A candidate key is an attributes or set of attributes that uniquely identifies individual occurrences or an entity type. It is always NOT NULL and unique, which means that the values in theses column(s) must never change.
staffl: {staff_id, staff_phone}

3) 4NF Violators
add city, state

4) Decomposition
1st Decomposition
Decomposition on xy or s_name s_phone, s_name s_id
Then r(x) or student(s_name, s_phone, s_id)
New Candidate Keys
student: { s_id, s_name, s_phone, s_email}
Remaining 4NF Violators
s_add city, state
2nd Decomposition
Decomposition on xy or s_phone s_name, s_phone s_email
Then r(x) or student(s_name, s_phone, s_email)
New Candidate Keys
student: { s_id, s_phone, s_email}
Remaining 4NF Violators
add city, state
Final Decomposition
student: { s_id, s_phone, s_email}
Tables with sample data:

Relational database store in tables. Defined by a collection of columns and contain zero or more rows. Tables typically represent a type of object or entity. Here describe the table entities and attributes with its primary and foreign key with data.
Primary Key:
· Primary key cannot accept null values
· By default, primary key is clustered index and data in the database table is physically organized in the sequence of clustered index.
· We can have only one primary key in a table
· Primary key can be made foreign key into another table.
Foreign Key:
· Foreign key can accept multiple null values.
· More than one foreign key in a table.
· Foreign key is a field in the table that is primary key in another table

1) staff: staff_id, staff_name, staff_family_name, staff_dob, staff_phone, staff_add, staff_degree
Primary Key: staff_id
	staff_id
	staff_name
	staff_family_name
	staff_dob
	staff_phone
	staff_add
	staff_degree

	S01
	PETER
	NATALIA
	27-02-1984
	176253762
	Queen Victoria Market MELBOURNE
	DEPLOMA IN MSIC

	S02
	DELTA
	MICHAEL
	04-05-1981
	231872771
	The Crown, MELBOURNE
	DEPLOMA

	S03
	JIMMY
	MISSY
	02-11-1980
	134322121
	Chinatown, MELBOURNE
	DEGREE

	S04
	NICK
	KATE
	09-04-1976
	128565899
	Eureka Skydeck MELBOURNE
	DEPLOMA

	

2) staff_course: staff_id, course_id
Foreign Key (staff_id) References staff(staff_id), Foreign Key (course_id) References course(course_id)
	staff_id
	course_id

	S01
	C01

	S01
	C04

	S02
	C01

	S02
	C03

	S03
	C04

	S04
	C02

3) course: course_id, course_name, cost, time
It’s Primary Key: course_id
	course_id
	course_name
	cost
	time

	C01
	Singing
	100
	60

	C02
	Piano
	75
	60

	C03
	Vialon
	120
	60

	C04
	Guitar
	50
	60

4) instrument: instrument_id, instrument_name, course_id, stock_qty, manufature_name It’s Primary Key: instrument_id
Foreign Key (course_id) References course(course_id)
	instrument_id
	instrument_name
	course_id
	stock_qty
	manufature_name

	I01
	PIANO
	C02
	3
	YAMAHA

	I02
	VIOLIN
	C03
	4
	ROCKY

	I03
	Guitar
	C04
	5
	TAYLOR

	I04
	AMPLIFIER KIOSK
	C04
	2
	STAR

5) student: s_id, s_name, s_add, s_dob, s_phone, s_family_name, s_email
It’s Primary Key: s_id
	s_id
	s_name
	s_add
	s_dob
	s_phone
	s_family_name
	s_email

	ST0001
	MICKY
	MELBOURNE
	08-02-1997
	298435667
	MICHAEL
	MICKY@xyz.com

	ST0002
	ANNA
	STREET NO - 75 MELBOURNE
	30-03-2001
	273645789
	PETER
	ANNA@xyz.com

	ST0003
	LISA
	STREET NO - 105 MELBOURNE
	15-12-2000
	243654167
	KATE
	LISA@xyz.com

	ST0004
	KAITE
	STREET NO - 11MELBOURNE
	22-06-2000
	277677899
	NICK
	KAITE@xyz.com

6) student_course: s_id, course_id, datetime, course_duration, staff_id, payment, date_paid
Foreign Key (course_id) References course(course_id), Foreign Key (s_id) References student(s_id)
	s_id
	course_id
	datetime
	course_duration
	staff_id
	payment
	date_paid

	ST0002
	C01
	28-07-2018
	60
	S01
	Y
	11-09-2018

	ST0001
	C01
	25-07-2018
	60
	S02
	Y
	02-09-2018

	ST0001
	C04
	08-08-2018
	30
	S03
	Y
	10-09-2018

	ST0003
	C02
	18-09-2018
	60
	S04
	N
	10-09-2018

7) invoice: invoice_no, s_id, amount, date
 It’s Primary Key: invoice_no
Foreign Key (s_id) References student(s_id)
	invoice_no
	s_id
	amount
	Date

	IN0001
	ST0001
	150
	31-08-2018

	IN0001
	ST0002
	100
	31-08-2018

	IN0001
	ST0001
	120
	30-08-2018

	IN0001
	ST0002
	110
	30-08-2018

Relationships

· They represent logical links between two or more entities.
· There are three types of relationship i.e.
One to One Relationship,
One to many Relationship
Many to Many Relationship

One to one relationship
· One to one relationship set between course entity and instrument entity sets.

One to many relationship
· One to many relationship set between course staff and staff_course entity sets.
· One to many relationship set between course and staff_course entity sets.
· One to many relationship set between student and student_course entity sets.
· One to many relationship set between student and invoice entity sets.
· One to many relationship set between course and student_course entity sets.

Many to many relationship
· Many to many relationship set between staff_course and student_course entity sets.

[image:]

Queries

· List details of students who are under 18 years of age.

	SELECT student.s_dob as Date_Of_Birth, Year(Now())-Year([s_dob]) AS Age
FROM student
WHERE Year(Now())-Year([s_dob])<=18;

· Show details of lessons coming up in the next 7 days (if any).

	SELECT a.course_id as Course_ID, b.course_name as Course_Name, b.time
FROM student_course AS a, course AS b
WHERE DateDiff('d',now(),a.datetime)<8 And b.course_id=a.course_id;

· Show a list of students and the total number of lessons they have had. Show the student ID, family name, given name, and the number of lessons.

	SELECT a.s_id as Student_ID, b.s_name as Name, b.s_add as Addess, b.s_dob as Date_Of_Birth
FROM student_course AS a, student AS b
WHERE a.course_id =(select course_id from course where course_name='PIANO')
and a.s_id=b.s_id;

· Show details of any student who has had piano lesson.

	SELECT a.s_id, a.s_name, a.s_family_name (select count(*) from student_course b where b.s_id =a.s_id)
FROM student AS a;

Report.

1)
[image:]
2)
[image:]
3)
[image:]

Page | 10

image3.png
staff_course
staff_id
course_id

instrument
@ instrument_id

instrument_name

stock_aty

staff 7 course ia menuatore_name
@ staft_ia Py course_name
staff_name. o
staf_family_narl ime
St dob student_course
staff_phone s.id =
staff_add course |

datetime
course_duratior
staff_id

payment

date paid ¥

staff_degree ¥

s_phone
s_family_name
s email -

image4.png

image5.png
e ——————
@ ~ Report2

Course_ID Course_Name time
o1 Singing)
o Singing &
02 Piano &
coa Guitar EY

image6.png
@ ~ Report3

Student_ID. Neme Addess Date_Of Birth

ST0002 UsA STREET NO- 105 MELBOURNE 15-12-2000

image2.emf
course

staff_cours

e

instrument

student

student_co

urse

staff

course_id

staff_id

staff_name

staff_id

staff_dob

staff_phone

staff_family_name

s_id

datetime

course_id

staff_id

date_paid

course_duration

payment

s_id

s_name

s_add

instrument_id

instrument_name

course_id

stock_qty

manufature_name

course_name cost time course_id

M

1

1

M

1

M

1

staff_add

staff_degree

1

s_dob

s_phone

invoice

invoice_no

s_id

amount

date

1

M

M

M

M

1

has

has

get

get

has

get

s_family_name

s_email

oleObject1.bin
invoice

course

staff_course

invoice_no

instrument

student

s_id

student_course

staff

amount

s_id

datetime

course_id

1

Static Structure

s_dob

s_phone

date

course_id

M

1

M

staff_id

M

staff_name

staff_id

staff_dob

staff_phone

staff_family_name

M

M

1

staff_id

date_paid

course_duration

payment

s_id

s_name

s_add

instrument_id

instrument_name

course_id

stock_qty

manufature_name

course_name

cost

time

course_id

1

staff_add

staff_degree

M

1

1

M

1

has

has

get

get

has

get

s_family_name

s_email

